Final Test Paper 2 INDIAN INSTITUTE OF MATERIALS MANAGEMENT Quantitative Techniques & Operations Research GDMM/PGDMM 3 YEARS

Instructions:

- 1. Answer all 50 questions. Each question carries 2 marks Total: 100 Marks
- 2. Duration 1 Hour.

*Required

Email *	
Name *	
Roll Number *	
1. Operations Research approach is Mark only one oval.	·
multi-disciplinary scientific intuitive	
collect essential data	
2. A feasible solution to a linear program	ming problem
Mark only one oval.	
must satisfy all the constraints of the pr	oblem simultaneously
need not satisfy all of the constraints, or	nly some of them
must be a corner point of the feasible re	gion.
must optimize the value of the objective	function

3. If any value in XB column of final simplex table is negative, then the solution is
Mark only one oval.
Option 1
infeasible
bounded
ono solution
4. For any primal problem and its dual
Mark only one oval.
optimal value of objective function is same
dual will have an optimal solution iff primal does too
primal will have an optimal solution iff dual does too
both primal and dual cannot be infeasible
5. The difference between total float and head event slack is
Mark only one oval.
free float
independent float
interference float
linear float
6. An optimal assignment requires that the maximum number of lines which can be drawn through squares with zero opportunity cost should be equal to the number of
Mark only one oval.
rows or columns
rows and columns.
rows+columns-1
rows-columns.

10.	7. To proceed with the Modified Distribution method algorithm for solving an transportation problem, the number of dummy allocations need to be added are		
	Mark only one oval.		
	\bigcap n		
	2n-1		
11.	8. Select the correct statement for EOQ		
	Mark only one oval.		
	EOQ is that quantity at which price paid by the buyer is minimum		
	If annual demand doubles with all other parameters remaining constant, the Economic Order Quantity is doubled		
	Total ordering cost equals holding cost		
	Stock out cost is never permitted		
12.	9. Service mechanism in a queuing system is characterized by		
	Mark only one oval.		
	customers behavior		
	servers behavior		
	customers in the system		
	server in the system		
13.	10. The objective of network analysis is to		
	Mark only one oval.		
	minimize total project duration		
	minimize toal project cost		
	minimize production delays, interruption and conflicts		
	maximize total project duration		

14.	11. In program evaluation review technique network each activity time assume a beta distribution because
	Mark only one oval.
	it is a unimodal distribution that provides information regarding the uncertainty of time estimates of activities
	it has got finite non-negative error
	it need not be symmetrical about model value
	the project is progressing well
15.	12. If there is no non-negative replacement ratio in solving a Linear Programming Problem then the solution is
	Mark only one oval.
	feasible
	bounded
	unbounded
	infinite
16.	13. The calling population is considered to be infinite when
	Mark only one oval.
	all customers arrive at once
	capacity of the system is infinite
	service rate is faster than arrival rate
	arrivals are independent of each other
17.	14. In marking assignments, which of the following should be preferred?
	Mark only one oval.
	Only row having single zero
	Only column having single zero
	Only row/column having single zero
	Column having more than one zero

	according to poison input process at average of 12 per hour. The service time follows exponential distribution with a mean of 4 minutes. The pumps are expected to be idle for
	Mark only one oval.
	3/5
	4/5
	5/3
	6/5
19.	16. If the order quantity (size of order) is increased,
	Mark only one oval.
	holding costs decrease and ordering costs increase
	holding costs increase and ordering costs decrease
	the total costs increase and then decrease
	storage cost as well as stock-out cost increase
20.	17 is a mathematical technique used to solve the problem of allocating limited resource among the competing activities
	Mark only one oval.
	Linear Programming problem
	Assignment Problem
	Replacement Problem
	Non linear Programming Problem
21.	18. A mixed strategy game can be solved by
	Mark only one oval.
	Simplex method
	Hungarian method
	Graphical method
	Degeneracy

18. 15. A petrol pump has one pump; Vehicles arrive at the petrol pump

22.	19. The activity cost corresponding to the crash time is called the
	Mark only one oval.
	critical time
	normal time
	cost slope
	crash cost
23.	20. A set of feasible solution to a Linear Programming Problem is
	Mark only one oval.
	convex
	polygon
	triangle
	bold
24.	21. In an Linear Programming Problem functions to be maximized or minimized are called
	Mark only one oval.
	constraints
	objective function
	basic solution
	feasible solution
25.	22. If the primal problem has n constraints and m variables then the number of constraints in the dual problem is
	Mark only one oval.
	mn
	m+n
	m-n
	m/n

26.	23. The non basic variables are called
	Mark only one oval.
	shadow cost
	opportunity cost
	slack variable
	surplus variable
27.	24. Key element is also known as
	Mark only one oval.
	slack
	surplus
	artificial
	pivot
28.	25. The solution to a transportation problem with m-sources and n-destinations is feasible if the numbers of allocations are
	Mark only one oval.
	m+n
	mn
	m-n
	m+n-1
29.	26. The allocation cells in the transportation table will be called cell
	Mark only one oval.
	occupied
	unoccupied
	no
	finite

30.	27. To resolve degeneracy at the	initial solution, a very small quantity is
	allocated in cell	
	Mark only one oval.	
	occupied	
	unoccupied	
	no	
	finite	
31.	28. The assignment algorithm wa	s developed by method.
	Mark only one oval.	
	HUNGARIAN	
	VOGELS	
	MODI	
	TRAVELING SALES MAN	
32.	29. An assignment problem is a p	particular case of
	Mark only one oval.	
	transportation Problem	
	assignment Problem	
	travelling salesman problem	
	replacement Problem	
33.	30. The coefficient of slack\surp	us variables in the objective function are
00.	always assumed to be	•
	Mark only one oval.	
	0	
	1	
	M	
	M	

34.	31. Using	_ method, we can never have an unbounded
	solution	
	Mark only one oval.	
	Simplex	
	Dual simplex	
	Big M	
	Modi	
35.	32 The customers of hi	igh priority are given service over the low priority
00.	customers is	
	Mark only one oval.	
	Pre emptive	
	FIFO	
	LIFO	
	SIRO	
36.		s said to be a when its operating
	characteristic are indep	pendent upon time
	Mark only one oval.	
	pure birth model	
	pure death model	
	transient state	
	steady state	
37.	24. An activity which do	pes not consume neither any resource nor time is
57.	known as	·
	Mark only one oval.	
	predecessor activity	
	successor activity	
	dummy activity	
	activity	

	Mark only one oval.
	total free independent interference
39.	36. The number of time estimates involved in Program Evaluation Review Technique problem is
	Mark only one oval.
	1234
40.	37. The assignment problem is always amatrix. Mark only one oval.
	circle square rectangle triangle
41.	38. The slack variables indicate Mark only one oval.
	excess resource available. shortage of resource nil resource idle resource

38. 35. The difference between total and free float is ______.

42.	39. If the net evaluation corresponding to any non -basic variable is zero, it is an indication of the existence of an
	Mark only one oval.
	initial basic feasible solution optimum basic feasible solution
	optimum solution.
	alternate optimum solution
43.	40. Mathematical model of linear programming problem is important because
	Mark only one oval.
	it helps in converting the verbal description and numerical data into mathematical expression
	decision makers prefer to work with formal models
	it captures the relevant relationship among decision factors
	it enables the use of algebraic technique
44.	41. While solving a linear programming problem infeasibility may be removed by Mark only one oval. adding another constraint adding another variable removing a constraint removing a variable
45.	42. The right hand side constant of a constraint in a primal problem appears in the corresponding dual as Mark only one oval. a coefficient in the objective function
	a right hand side constant of a function
	an input output coefficient a left hand side constraint
	coefficient variable

46.	43. During iteration while moving from one solution to the next, degeneracy may occur when
	Mark only one oval.
	the closed path indicates a diagonal move
	two or more occupied cells are on the closed path but neither of them represents a corner of the path.
	two or more occupied cells on the closed path with minus sign are tied for lowest circled value.
	the closed path indicates a rectangle move.
47.	44. Maximization assignment problem is transformed into a minimization problem by
	Mark only one oval.
	adding each entry in a column from the maximum value in that column
	subtracting each entry in a column from the maximum value in that column
	subtracting each entry in the table from the maximum value in that table
	adding each entry in the table from the maximum value in that table
48.	45. Priority queue discipline may be classified as
	Mark only one oval.
	pre-emptive or non-pre-emptive
	limited
	unlimited
	finite
49.	46. Replace an item when
	Mark only one oval.
	average cost upto date is equal to the current maintenance cost
	average cost upto date is greater than the current maintenance cost
	average cost upto date is less than the current maintenance cost.
	next year running cost in more than average cost of nth year

50.	47. In time cost trade off function analysis				
	Mark only one oval.				
	cost decreases linearly as time increases				
	cost increases linearly as time decreases				
	cost at normal time is zero				
	cost increases linearly as time increases				
51.	48. The transportation problem deals with the transportation of				
	Mark only one oval.				
	a single product from a source to several destinations				
	a single product from several sources to several destinations				
	a single product from several sources to a destination				
	a multi-product from several sources to several destinations				
52.	49. The minimum number of lines covering all zeros in a reduced cost matrix of order n can be				
	Mark only one oval.				
	at the most n				
	at the least n				
	n-1				
	n+1				
53.	50. For a 2.5% increase in order quantity (under fundamental EOQ problem) the total relevant cost would				
	Mark only one oval.				
	increase by 2.5%.				
	decrease by 2.5%.				
	increase by 0.25%.				
	decrease by 0.25%.				

Google Forms