INDIAN INSTITUTE OF MATERIALS MANAGEMENT Post Graduate Diploma in Materials Management

PAPER – 18-C OPERATIONS RESEARCH

Date:16.06.2009 Time: 2.00pm To 5.00pm Max. Marks:-100 Duration: 3 Hours

Instructions :

- 1. Attempt all questions in Part A
- 2. Attempt any 5 questions in Part B

3. Marks for Part A are 25 and marks for Part B are 75

<u>PART A</u>

Marks: 10

Q.1. State whether the statements below are true or false.

- a). Iconic models retain some of the physical properties of the system they represent.
- b). An unrestricted variable shall have a non-negative value.
- c). A zero-one integer-programming problem has all decision variables have values zero or one.
- d). A transportation model if an unoccupied cell has an opportunity cost of zero, alternative solution exists.
- e). In relative assignments, probabilities are assigned based proportion of an event.
- f). PERT assumes probability distribution for the duration of each activity.
- g). If a game has a saddle point, players play mixed strategies.
- h). When a customer jockeys he does not join the key.
- i). In a queue, size of the calling population is input source characteristics.
- j). Total inventory costs includes only purchase cost.

Q.2. Match the columns A and B

Marks: 5

	Α		В	
1	Modi Method	а	A random variable with two combination	
2	$\lambda/\mu >= 1$	b	Transportation Problem	
3	A possible outcome of a single toss of a coin	С	Theory of Games	
4	Payoff across two business partners	d	A queue will not be formed	
5	$Z = ((x - \mu) \sigma)$	e	Standard Normal Variable	

Q.3. Fill in the blanks.

Marks: 10

- i). A descriptive model _____ certain aspects of a situation.
- ii). In a queue model, inter-arrival rate is assumed to be ______.
- iii). A utility function describes the relative _____ of an individual.
- iv). A random process, which is time dependent is called as a _____ process.
- v). CPM stand for _____.
- vi). If a constraint in a problem has an equality sign, the corresponding dual variable shall be _____.
- vii). If in the final simplex table, an artificial variable appears at a positive value and the solution is optimal, then such solution is a ______ solution.
- viii). If a problem involves an allocation of n different facilities to n different tasks, such a problem is called an _____ problem.
- ix). The float that causes reduction in the float of the successor activity is called ______float.
- x). λ/μ for a waiting line is know as _____

<u>PART B</u>

Q4.A The yearly cost of two machines A and B when change money value is ignored is shown in the table below. Find the cost pattern if money value is 10% per year. Which machine is the more economical of the two?

Marks: 8

Year	1	2	3
Machine A (Rs.)	1800	1200	1200
Machine B (Rs.)	2800	200	1200

Q4.B The setup cost of a production line is Rs. 36. Usage rate is 3600 units per year. Carrying cost per unit is Rs. 2.5 per year. Determine production lot size.

Marks: 7

- **Q5.A** What is an assignment problem? Give one example. **Marks: 5**
- **Q5.B** At a railway yard goods trains arrive at a rate of 30 trains per day. A train requires 36 minutes of service. If arrivals are Poisson and service is exponential, find:

Marks: 5+5

- i). Expected line length
- ii). Probability that queue size exceeds 10.

Q6.A Define Earliest Finish Time and Latest Start Time for an activity. Marks: 3+3

Marks:3+3+3

A small project is composed of seven activities whose time estimates are given in the following table:

Activity Event	Preceding Activity	Time in Days
A	*	4
В	*	7
С	*	8
D	A	5
E	С	4
F	B, E	4
G	С	11
Н	G, F	4

Draw the network and find the critical duration and critical path.

Q.7 Use the Simplex method to solve the following LP problem: Marks: 15 Maximize $Z = 3 X_1 + 5 X_2 + 4X_3$ Subject to the constraints $2 X_1 + 3 X_2 < = 8$

$$2 X_2 + 5 X_3 <= 10$$

 $3 X_1 + 2 X_2 + 4 X_3 <= 15$
 $X_1, X_2, X3 \text{ all } >= 0.$

Q.8.A Explain 2 X 2 two-person game and 2 X m and m X 2 games.

Marks: 2+2+2

Q.8.B

Marks: 9

Marks: 5

Solve the game with the pay-off matrix for player A as given in the table below:

		Player B		
		B1	B2	B3
	A1	-1	2	-2
Player A	A2	6	4	-6

Q.9.A Explain the characteristics of the Poisson Process.

- Q.9.B If the variance of a random variable X is 0.35, what is the variance of random variables 3X and 0.2X? Marks: 10
- Q10.A Explain the transportation problem.

Q10.B

Marks: 10

Marks: 5

Three men A, B, C are available to do 3 programmes 1, 2, 3. The time that each man takes to do each programme is given in the following matrix. Find the optimal assignment.

	А	В	С
1	120	100	80
2	80	90	110
3	110	140	120

Q6.B